ESTRATÉGIAS DE DECISÃO NO AMBIENTE ORGANIZACIONAL

UNIDADE I

Capítulo 01

O Uso de Simulações na Tomada de Decisões

CAPÍTULO 01

O Uso de Simulações na Tomada de Decisões

Objetivos:

Ao final deste capítulo, esperamos que você seja capaz de:

- Entender a importância dos modelos matemáticos na tomada de decisão;
- Compreender o método de Simulação de Monte Carlo e sua utilização na tomada de decisão;
- Identificar problemas de gestão passíveis de serem resolvidos com fatos científicos;
- Assumir os riscos de gestão e lidar eficientemente com eles;
- Resolver problemas com emprego da técnica de simulação

Considerações iniciais

Tomar decisões baseadas em critérios *científicos* e *racionais* exige como aliados a Matemática, a Estatística e a Informática Aplicada.

A nossa caminhada, onde será enfatizada a importância dos modelos matemáticos no processo de tomada de decisão, está dividida em dois momentos:

1º Momento – Buscaremos entender melhor o conceito de modelagem, seus campos de aplicações e a técnica da simulação, usando o método de Monte Carlo

2º Momento – Aprofundaremos as técnicas de modelagem, utilizando planilhas eletrônicas, que utiliza ferramentas eletrônicas mais específicas como o Solver do Excel e o Lindo, o Crystal Ball da Oracle e o @Risk da Palisade.

EXEMPLO do BANCO

Por exemplo, imagine-se, neste momento, gerente geral de uma pequena agência bancária em sua cidade. Você conta, atualmente, com um caixa para atender às necessidades dos clientes e mais cinco máquinas de autos serviços no saguão de entrada. Porém, a recente exigência do Programa de Orientação e Proteção do Consumidor (PROCON) com relação ao tempo máximo de 15 minutos para espera nas filas da agência, levou você a uma reflexão sobre uma possível necessidade de adequação a este novo cenário.

Qual seria sua melhor decisão nesta situação? Aumentar a quantidade de caixas ou máquinas de auto-atendimento para evitar uma espera excessiva dos clientes nas filas? Ou aguardar até que o primeiro cliente entre com um processo no PROCON?

Neste momento entra em ação a Simulação dotando o tomador da decisão de instrumentos racionais e até científicos para escolher uma alternativa eficiente e eficaz. A Simulação mostrar-nos-á, por exemplo, se existe ou não a necessidade de reestruturação do atendimento no nosso banco, buscando apresentar a situação com base em dados presentes de forma a auxiliar na projeção de cenários bem próximos da realidade.

O Que É Simular?

Segundo o famoso dicionário do Aurélio, SIMULAR é:

- > Fingir
- Representar com semelhança

Disfarçar

Para nós, porém, SIMULAR é:

- Imitar um problema real através de um modelo e conduzir experimentos com este modelo.
- Experimentação numérica com modelos lógicos-matemáticos, usando o computador.

Quando Surgiu essa Técnica?

A *Simulação* surgiu pela primeira vez durante a Segunda Guerra Mundial, quando equipes de pesquisadores buscavam criar métodos para resolver problemas táticos e estratégicos em operações militares. Em função do sucesso obtido, mais tarde, os meios acadêmicos e empresariais buscaram trazer estas ferramentas para resolver problemas de gestão. É importante ainda ressaltar que, com o rápido avanço dos recursos computacionais, ficou muito mais fácil desenvolver modelos matemáticos mais avançados e funcionais.

De onde veio, ou melhor, como surgiu a Simulação

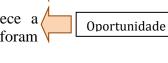
É a utilização do método científico para prover os departamentos executivos de organizações com elementos quantitativos para tomada de decisões sobre operações que estejam sob o seu controle.

Por que Simular?

- Proporciona melhor compreensão sobre a natureza de um processo.
- Identifica problemas específicos ou áreas problemáticas dentro de um sistema.
- Desenvolve políticas ou planos específicos para um processo.
- Testa novos conceitos e/ou sistemas antes de sua implementação.
- Representa uma "apólice de seguros" quanto ao desempenho futuro do sistema.

A Simulação permite avaliar a operação de um sistema novo, sem precisar construí-lo, ou de um sistema já existente, sem pertubá-lo, sob uma variedade de condições.

Permite compreender como os vários componentes de um sistema interagem entre si e sua influência no desempenho global do sistema.


Tomada de decisão

Antes que você se decida sobre o que fazer com a estrutura de atendimento da agência do seu banco, é importante entendermos o que é **tomada de decisão**.

O que é?

É basicamente um processo de identificação de um **problema** ou **oportunidade** para selecionar uma linha de ação que o resolva. Portanto:

 Um <u>problema</u> ocorre quando o estado atual de uma situação for diferente do estado desejado;

 Já uma oportunidade acontece quando o contexto oferece a chance de ultrapassar os objetivos e/ou metas que foram estabelecidos

Um processo de tomada de decisão é normalmente sequencial e complexo, sendo muitas vezes fruto de pequenas decisões em sistemas inter-relacionados, com uma grande diversidade de interesses e objetivos.

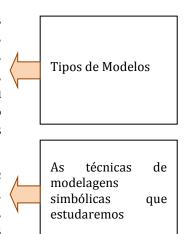
Problema

Envolve ainda valores subjetivos, já que a decisão é atribuída aos executivos das empresas, que utilizam, por diversas vezes, a intuição e a experiência para resolver as questões do dia-a-dia. Dentre os vários fatores que afetam uma tomada de decisão, podemos destacar, segundo Lachtermacher (2002):

Tempo disponível para a tomada de decisão;
A importância da decisão;
O ambiente;
Certeza/incerteza e risco;
Agentes decisórios;
Conflito de interesses;

Portanto, acabamos de entender que decisões não podem ser tomadas de forma aleatória. Se utilizarmos apenas a intuição ao decidir o melhor caminho para a nossa agência bancária, por exemplo, teremos um risco muito maior de errar na escolha. Para melhorar as chances de acerto, veremos adiante como a modelagem pode nos ajudar a encontrar a melhor saída.

Modelagem


Para entendermos melhor o conceito de modelagem, voltaremos para o nosso exemplo do banco, onde você é responsável pela gestão. O conjunto complexo de todas as variáveis existentes no dia-a-dia de trabalho implica na criação de várias hipóteses que dificultam muito a análise do problema. Para simplificar, escolhemos dentre estas diversas variáveis ambientais, aquelas que mais influenciam o caso que estamos analisando: o tempo de permanência do cliente nas filas. A figura, a seguir, mostra como são feitos a criação e o processamento de um modelo para que possa virar uma decisão gerencial:

Na realidade, podemos ter três tipos de modelos: físicos, análogos e simbólicos (matemáticos). Os **modelos físicos**, mais utilizados na engenharia, são os protótipos que simulam o funcionamento de aeronaves, por exemplo. Os **modelos análogos** são representações da realidade em gráficos ou esquemas, tal como o marcador de carga de um celular. Já os **simbólicos ou matemáticos**, serão assuntos de nossos estudos e, normalmente, são representados por variáveis de decisão, configuradas através de expressões matemáticas ou modelos probabilísticos.

Estudaremos durante este capítulo do curso as *técnicas de modelagem simbólicas* mais praticadas e importantes no universo da gestão: s<u>imulação</u>, programação linear e programação não-linear. No nosso exemplo do banco, usaremos uma das técnicas da <u>simulação</u> para buscar uma análise mais detalhada.

Simulação

As constantes mudanças ambientais impõem uma necessidade contínua de investigação no funcionamento de sistemas organizacionais. Este estudo pode ser feito através de um **modelo simbólico**, como vimos anteriormente, que quando tem um caráter investigativo do problema, propõe-se o uso da técnica de simulação.

Modelo Simbólico
Investigação
Simulação

Dizemos que existe uma solução analítica para um modelo simbólico de simulação quando é possível desenvolver um raciocínio matemático e determinar os valores para as variáveis envolvidas. O <u>objetivo</u> da simulação é descrever a distribuição e características dos possíveis valores da variável dependente Y, depois de determinados os possíveis valores e comportamentos das variáveis independentes X_1 , X_2 , X_3 ,..., X_n .

Ao contrário de outras técnicas de modelagem, tal como a programação linear, que veremos no próximo capítulo, na simulação realizamos **inferências** sobre o comportamento do sistema que, em geral, é probabilístico, dado que as observações representam apenas uma amostra do conjunto total das observações.

Simulação x Estatística Inferencial

EXEMPLO DO BANCO

Voltando novamente ao caso do banco, definiremos o modelo de simulação a ser utilizado, através da coleta de informações em uma observação direta do processo durante um período de 2 dias. Na medição, você notou, primeiramente, que o intervalo entre as chegadas dos clientes no caixa para serem atendidos, bem como também o tempo de atendimento de cada cliente, seguia uma distribuição de frequência como descritos, a seguir:

Tempo entre as chegadas	Ocorrências	Tempo de atendimento	Ocorrências	
00:05	14	00:05	11	
00:07	32	00:06	19	Fazendo
00:08	26	80:00	28	medições
00:10	18	00:10	27	
00:12	10	00:12	15	

Aprenderemos, agora, como utilizar estas informações para montar o nosso modelo para ajudar na tomada de decisão quanto à necessidade ou não de contratação em nossa agência bancária.

O método de Monte Carlo

Desenvolvida por um matemático chamado John Von Neumann, durante a 2ª Guerra Mundial, foi utilizado para resolver problemas de física que eram muito complexos ou caros para analisar através de modelos físicos. A simulação de Monte Carlo passou a ser utilizada, mais tarde, como ferramenta de gestão, e tem como principal base a *experimentação probabilística de elementos*.

Usaremos, a seguir, técnica de modelagem conhecida como Método de Monte Carlo, baseada em <u>cinco</u> *passos básicos*:

1. Estabelecendo as distribuições probabilísticas

Uma forma comum de estabelecer uma **distribuição probabilística** para uma dada variável é examinar os seus valores históricos. A probabilidade, ou frequência relativa, para cada resultado possível, é a divisão de cada resultado possível pelo número total de observações realizadas. No nosso caso, então, teremos que as tabelas ficam da seguinte forma:

$$Prob = rac{Ocorrência}{N^{\circ} total de observações}$$

Tempo entre as chegadas	Ocorrências	Probabilidade de Ocorrência	Tempo de atendimento	Ocorrências	Probabilidade de Ocorrência
00:05	14	14÷100 = 0,14	00:05	11	11÷100 = 0,11
00:07	32	32÷100 = 0,32	00:06	19	$19 \div 100 = 0,19$
80:00	26	26÷100 = 0,26	00:08	28	28÷100 = 0,28
00:10	18	18÷100 = 0,18	00:10	27	27÷100 = 0,27
00:12	10	10÷100 = 0,10	00:12	15	15÷100 = 0,15
	100			100	

2. Construindo a distribuição probabilística acumulada

Para cada uma das variáveis descritas anteriormente, calcularemos as distribuições <u>acumuladas</u>, somando o valor da frequência relativa da variável atual com o somatório anterior, assim:

Tempo entre as chegadas	Ocorrências	Probabili- dade de Ocorrência	Probabilidade Acumulada
00:05	14	0,14	0 + 0,14 = 0,14
00:07	32	0,32	0.14 + 0.32 = 0.46
80:00	26	0,26	0,46 + 0,26 = 0,72
00:10	18	0,18	0,72 + 0,18 = 0,90
00:12	10	0,10	0,90 + 0,10 = 1,00

Tempo de atendimento	Ocorrências	Probabili dade de Ocorrência	Probabilidade Acumulada
00:05	11	0,11	0 + 0,11 = 0,11
00:06	19	0,19	0,11 + 0,19 = 0,30
80:00	28	0,28	0,30 + 0,28 = 0,58
00:10	27	0,27	0,58 + 0,27 = 0,85
00:12	15	0,15	0,85 + 0,15 = 1,00

3. Definindo um intervalo de números aleatórios para cada variável

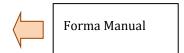
Uma vez estabelecidas as probabilidades acumuladas, iremos <u>atribuir</u> um conjunto de números para representar cada valor ou resultado possível. Estes conjuntos são chamados de *intervalos de números aleatórios*, definidos a partir das probabilidades acumuladas encontradas no passo anterior. Vejamos, no nosso exemplo da agência bancária, como é calculado:

Tempo entre as chegadas	Ocorrências	Probabilidade de Ocorrência	Probabilidade Acumulada	Intervalo de Nº Aleatórios
00:05	14	0,14	0,14	0 14
00:07	32	0,32	0,46	15 46
00:08	26	0,26	0,72	47 72
00:10	18	0,18	0,90	73 90
00:12	10	0.10	1.00	91 100

Tempo de Atendimento	Ocorrências	Probabilidade de Ocorrência	Probabilidade Acumulada	Intervalo de Nº Aleatórios
00:05	11	0,11	0,11	0 11
00:06	19	0,19	0,30	12 30
00:08	28	0,28	0,58	31 58
00:10	27	0,27	0,85	59 85
00:12	15	0,15	1,00	86 100

4. Gerando os números aleatórios

Os números aleatórios podem ser gerados para problemas de simulação de várias formas. Se um problema <u>é muito grande</u> e o processo estudado envolve diversas tentativas de simulação, usamos planilhas eletrônicas e programas especializados para esta finalidade.



No Excel temos a função: "=**ALEATÓRIO()**" que gera um número aleatório maior ou igual a 0 e menor do que 1.

É fácil gerar números aleatórios de cabeça?

- 1. Cada estudante deve anotar um número entre 0 e 9 em um pedaço de papel.
- 2. Qual o número que mais ocorreu?

Outra maneira seria utilizando dispositivos físicos como dados, roleta, moeda, etc.

Poderíamos colocar 100 bolinhas em uma urna e numerá-las como a demanda diária de um produto num supermercado. Assim de cada 100 pedidos, verificamos quantos pedidos se referem aquele produto, digamos 11. Então teríamos 11 bolinhas marcadas como produto 1, e assim por diante. Cada vez que retirássemos uma bola da urna, ao acaso, estaríamos simulando o pedido dos produtos (a nossa variável, esse caso).

Existem ainda tabelas de números aleatórios nos livros para essa finalidade. A seguir apresentamos uma delas:

82	31	30	65	35	62	41	77	99	78	25	70	62	92	3	75	74	99
10	55	24	17	41	47	72	9	46	77	13	70	83	47	43	5	95	29
30	30	75	96	75	9	75	26	70	48	16	9	7	81	20	55	48	11
54	41	38	1	89	98	39	84	93	90	22	57	15	77	5	14	22	95
72	22	75	44	24	11	92	45	60	5	26	25	45	76	64	59	92	33
94	64	18	24	44	26	92	5	41	36	74	75	91	66	72	87	5	20
26	49	27	59	57	72	70	94	58	98	49	25	37	28	96	47	47	36
7	36	60	5	51	60	95	33	42	45	65	28	13	8	45	35	92	52
33	26	92	13	38	81	59	43	22	24	47	53	63	77	89	12	37	40
38	97	33	47	59	36	17	35	86	11	75	40	81	94	64	52	15	51
89	79	8	36	44	36	39	61	79	11	77	87	19	38	43	87	15	56
20	48	53	46	76	40	97	5	13	87	2	63	71	73	93	93	36	81
70	9	75	36	86	56	1	83	75	23	37	63	86	67	30	58	55	14
99	87	69	60	18	80	68	25	46	50	63	65	70	59	11	93	34	65
60	94	91	54	74	90	64	57	13	60	75	86	17	50	88	71	28	51
1	88	2	71	60	42	33	62	85	75	34	76	95	89	25	52	22	13
22	9	33	44	17	7	50	35	81	73	97	32	93	11	50	94	55	29
40	38	59	56	63	31	15	31	40	7	41	20	80	53	55	41	35	74
42	12	32	13	47	95	32	9	32	25	25	82	12	65	90	17	26	27
99	7	73	13	40	47	0	13	93	11	64	77	57	61	19	75	57	56
77	30	96	10	92	26	16	73	59	7	98	46	6	99	78	27	22	27
33	10	97	87	10	17	28	47	79	0	42	89	3	33	25	95	51	72
85	15	68	54	26	52	36	64	21	8	54	94	33	92	26	88	60	12
45	96	84	71	77	63	54	71	58	51	28	13	77	44	85	7	97	1
63	46	32	92	39	48	68	77	83	98	37	0	90	95	88	55	51	3

Tabela 01 – Tabela de números aleatórios

5. Simulando o experimento

Podemos simular a situação do atendimento na agência do nosso banco, utilizando os *números aleatórios* da Tabela 01. Vamos gerar, aleatoriamente, números para <u>duas situações</u>, no caso do nosso estudo:

- 1-) chegada à fila do caixa e
- 2-) tempo total de atendimento para cada cliente.

Você pode iniciar por <u>qualquer</u> número da tabela, mas, para exemplificar, pegaremos os números da primeira coluna para medir o tempo de chegada dos clientes e os da terceira coluna para medir o tempo de atendimento.

Situação 01

Situação 02

Cliente	Número Aleatório	Intervalo de Chegada	Número Aleatório	Tempo de Atendimento
1	82	00:10	30	00:06
2	10	00:05	24	00:06
3	30	00:07	75	00:10
4	54	00:08	38	00:08
5	72	00:08	75	00:10

Para sabermos se existe e qual é o tempo *médio* das filas, devemos criar uma planilha que <u>simule</u> a realidade, com as informações que temos no momento. Portanto, devemos calcular os horários em que o cliente chega ao banco, quando inicia o atendimento, bem como também quando é liberado, para que permita ao caixa atender outra pessoa. Lembrando que estas variáveis podem ser calculadas utilizando os seguintes critérios:

- **chegada ao banco**: hora da última chegada de um cliente adicionada ao tempo de intervalo calculado, usando a tabela de números aleatórios;
- início do atendimento: é igual à hora final de atendimento do cliente anterior;
- **tempo de fila**: diferença entre a hora de início do atendimento e a chegada ao banco;
- final do atendimento: adiciona o tempo de atendimento calculado na geração de números aleatórios com a hora de início de atendimento.

Critérios usados para encontrar as 3 variáveis:

1ª – horário de chegada do cliente

2ª – Início do atendimento

3ª – Final do atendimento

Cliente	Nº Aleatório	Intervalo de Chegada	Chegada no Banco	Início do Atendimento	Tempo na Fila	Nº Aleatório	Tempo de Atendimento	Final de Atendimento
1	82	00:10	10:10	10:10	00:00	30	00:06	10:16
2	10	00:05	10:15	10:16	00:01	24	00:06	10:22
3	30	00:07	10:22	10:22	00:00	75	00:10	10:32
4	54	00:08	10:30	10:32	00:02	38	00:08	10:40
5	72	00:08	10:38	10:40	00:02	75	00:10	10:50
6	94	00:12	10:50	10:50	00:00	18	00:06	10:56
7	26	00:07	10:57	10:57	00:00	27	00:06	11:03
8	7	00:05	11:02	11:03	00:01	60	00:10	11:13
9	33	00:07	11:09	11:13	00:04	92	00:12	11:25
10	38	00:07	11:16	11:25	00:09	33	00:08	11:33
11	89	00:10	11:26	11:33	00:07	8	00:05	11:38
12	20	00:07	11:33	11:38	00:05	53	00:08	11:46
13	70	00:08	11:41	11:46	00:05	75	00:10	11:56
14	99	00:12	11:53	11:56	00:03	69	00:10	12:06
15	60	00:08	12:01	12:06	00:05	91	00:12	12:18
16	1	00:05	12:06	12:18	00:12	2	00:05	12:23
17	22	00:07	12:13	12:23	00:10	33	00:08	12:31
18	40	00:07	12:20	12:31	00:11	59	00:10	12:41
19	42	00:07	12:27	12:41	00:14	32	00:08	12:49
20	99	00:12	12:39	12:49	00:10	73	00:10	12:59
21	77	00:10	12:49	12:59	00:10	96	00:12	13:11
22	33	00:07	12:56	13:11	00:15	97	00:12	13:23
23	85	00:10	13:06	13:23	00:17	68	00:10	13:33
24	45	00:07	13:13	13:33	00:20	84	00:10	13:43
25	63	00:08	13:21	13:43	00:22	32	00:08	13:51
	Média	00:08:02			00:07:24		00:08:48	

Resultado da Simulação

Observamos que, apesar do tempo médio de espera na fila ser menor que 7 minutos, perto de uma hora da tarde, o tempo aumentou significativamente, chegando a passar limite máximo exigido pelo PROCON de 15 minutos. Outro ponto importante observado é que o tempo médio de atendimento é ligeiramente maior que o de chegada dos clientes, propiciando uma situação de esperas em filas ao longo do dia.

É importante que você considere, ao tomar sua decisão, que um número tão reduzido de tentativas em uma simulação, pode trazer distorções em relação ao tempo médio real esperado de chegada e atendimento. Para isso, é indicado fazer várias simulações com o auxílio de planilhas eletrônicas, encontrando, posteriormente, a média dos tempos médios de cada simulação, visando estabilizar os números do estudo e conseguir um retorno adequado das condições simuladas.

Quando optamos por uma quantidade maior de experimentos, fazemos com que a média das variáveis simuladas se aproxime do valor esperado calculado através da estatística. De qualquer forma, é importante mostrar a você que é necessariamente mais seguro tomar decisões sobre a contratação ou não de mais um funcionário, bem como de melhorar um processo de atendimento, utilizando informações mais precisas, e não apenas a sua intuição de gestão.

A resposta para o nosso exemplo é: a ampliação da gama de serviços oferecidos pelos caixas eletrônicos, ou até uma melhoria no processamento das operações

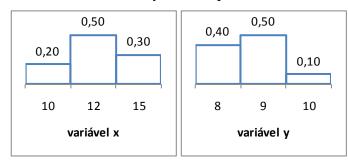
feitas no caixa pode contribuir para a redução no tempo de atendimento e, consequentemente, no tempo de espera nas filas.

A modelagem deste problema pode ser também facilmente criada através de planilhas eletrônicas, utilizando as funções de geração de números aleatórios que poderão ser estudadas nas leituras obrigatórias e complementares. Além disso, é possível utilizar softwares específicos para simulações, como o *Cristal Ball*, *Arena* e outros.

LISTA DE EXERCÍCIOS SOBRE SIMULAÇÕES DE MONTE CARLO

1. Uma central de atendimento anotou nos últimos 100 dias a quantidade de pessoas atendidas por dia, e distribui-as em cinco classes.

Classes de	Dias
Atendimentos	
10 12	15
12 14	20
14 16	35
16 18	20
18 20	10


Construir um padrão do número de atendimentos para a próxima semana (sete dias). Use os números aleatórios: 10, 85, 36, 49, 58, 05, 67.

Solução

Classes de	Dias	Frequência	Frequência	Intervalo de
Atendimentos		Relativa	Acumulada	nº aleatórios
10 12	15			
12 14	20			
14 16	35			
16 18	20			
18 20	10			

Dia da	Nº Aleatório	Atendimentos
Semana		
1	10	
2	85	
3	36	
4	49	
5	58	
6	05	
7	67	

2. As variáveis x e y são independentes e têm as distribuições empíricas de probabilidades:

Construir os valores de z = 2x + 3y usando 10 simulações para x e y. Qual o valor médio de z? Qual o desvio padrão de z?

Use os números aleatórios:

Para x: 38, 91, 18, 89, 71, 67, 46, 73, 42, 47

Para y: 34, 41, 69, 04, 51, 61, 29, 21, 02, 34.

Solução

X	Frequência Relativa	Frequência Acumulada	Intervalo de nº aleatórios
10			
12			
15			

Y	Frequência	Frequência	Intervalo de
	Relativa	Acumulada	nº aleatórios
8			
9			
10			

Simulação	N°	X	N°	у	Z
	Aleatório		Aleatório		
1	38		34		
2	91		41		
3	18		69		
4	89		4		
5	71		51		
6	67		61		
7	46		29		
8	73		21		
9	42		2		
10	47		34		

Fazendo na Calculadora HP-12C:

3. Um item do estoque de uma empresa tem prazo de espera (tempo decorrente entre o pedido de reposição e o atendimento) de um, dois ou três dias, com probabilidade de 30%, 40% e 30%. Simular a situação do estoque para sete dias, sabendo que o uso diário do produto é de quatro unidades, o estoque inicial de 14 unidades e o pedido é feito sempre que o estoque tenha menos de 12 peças. Qual o estoque após os sete dias simulados? A quantidade pedida é 10 unidades. Os pedidos podem ser acumulados. Use os números: 45, 38, 96, 84, 12, 62, 35.

Solução

Dias de	Frequência	Frequência	Intervalo de
Reposição	Relativa	Acumulada	nº aleatórios
1			
2			
3			

Uso diário:

Estoque inicial:

Pedido:

Dia	Nº Aleatório	Estoque Inicial	Reposição	Quantidade Demandada	Estoque Final	Pedir?	Prazo de Entrega	Dia da Entrega
1	45							
2	38							
3	96							
4	84							
5	12							
6	62							·
7	35							

O estoque após 7 dias simulados será de _____ unidades.

3A. Repetir o exercício 3 considerando agora a quantidade demandada como 7 unidades, verificando a demanda foi atendida, medindo o grau de satisfação do cliente e a quantidade perdida de venda por falta de estoque.

Solução

Dia	Nº Aleatório	Estoque Inicial	Reposição	Quantidade Demandada	Demanda Atendida	Estoque Final	Pedir?	Prazo de Entrega	Dia da Entrega	Perda
1	45									
2	38									
3	96									
4	84									
5	12									
6	62									
7	35									

O estoque após 7 dias simulados será de	unidades. O grau de satisfação do cliente foi de	% e
a quantidade perdida de venda por falta de estoc	gue foi de .	

4. No problema anterior, suponha que a demanda diária do produto seja de três, quatro ou cinco unidades, com probabilidades: 20%, 50%, 30%, respectivamente. Use os números aleatórios para o uso diário: 48, 53, 47, 18, 36, 87, 35. Calcule o estoque após 7 dias simulados.

Solução

Uso Diário	Frequência Relativa	Frequência Acumulada	Intervalo de nº aleatórios
3			
4			
5			

Dia	Nº Aleatório Prazo de Entrega	Estoque Inicial	Reposição	Nº Aleatório Demanda Diária	Quantidade Demandada	Estoque Final	Pedir?	Prazo de Entrega	Dia de Entrega
1	45			48					
2	38			53					
3	96			47					
4	84			18					
5	12			36					

(6	62		87			Ī
,	7	35		35			l

O estoque final após 7 dias simulados será de _____ unidades.

4A. Repetir o exercício 4 verificando a demanda atendida, medindo o grau de satisfação do cliente e a quantidade perdida de venda por falta de estoque.

Solução

Dia	Nº Aleatório Prazo de Entrega	Estoque Inicial	Repo- sição	i Demanda	Quantidade Demandada	Demanda Atendida	Estoq. Final	Pedir ?	Prazo de Entrega	Dia de Entrega	Perda
1	45			48							
2	38			53							
3	96			47							
4	84			18							
5	12			36							
6	62			87							
7	35			35							

O estoque após 7 dias simulados será de	unidades. O grau de satisfação do cliente foi de	_ % e
a quantidade perdida de venda por falta de estoc	que foi de	

5. Suponha agora que no problema 4, o custo de manter o estoque de um dia para outro seja de 0,5 por unidade, e que o custo por falta de um item seja de 2,00. Qual o custo semanal neste caso?

Solução

Dia	N° Aleatório Prazo de Entrega	Estoq. Inicial	Repo- sição	Nº Aleatório Demanda Diária	Quantidade Demandada	Estoq Final	Pedir?	Prazo de Entrega	Dia de Entrega	Custo de Estocagem
1	45			48						
2	38			53						
3	96			47						
4	84			18						
5	12			36						
6	62			87						
7	35			35						

\mathbf{O}	custo	semanal	neste	caso é	de	
`	Cusio	SCHIAHAI	HUSIL	Casu C		

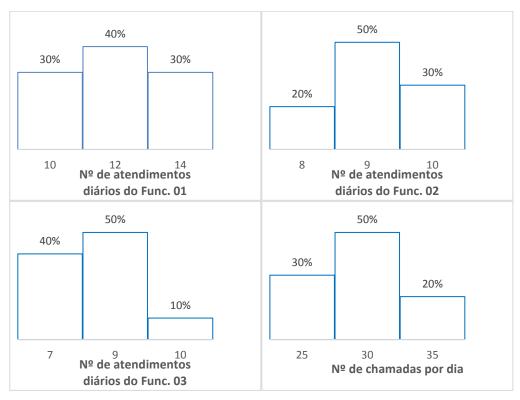
5A. Repetir o exercício 4 verificando a demanda atendida, medindo o grau de satisfação do cliente e a quantidade perdida de venda por falta de estoque. Qual o custo semanal neste caso?

Solução

Dia	N° Aleatório Prazo de Entrega	Estoq. Inicial	Repo- sição		Quantidade Demandada	Estoq Final	Pedir ?	Prazo de Entrega	Dia de Entrega	Perda	Custo da Estocagem	Custo da Perda
1	45			48								
2	38			53								
3	96			47								
4	84			18								
5	12			36								
6	62			87								
7	35			35								

O custo semanal neste caso é de _____

6. Simule a situação do problema 5, usando o fato de fazer o pedido quando o estoque tenha menos de 10 peças. Qual o custo neste caso? O que sugere este resultado?


Solução

Dia	Nº Aleatório	Estoque Inicial	Nº Aleatório Uso	Uso	Estoque Final	Pedir?	Custo de Estocagem
1	45		48				
2	38		53				
3	96		47				
4	84		18				
5	12		36				
6	62		87				
7	35		35				
						SOMA	

O custo será o mesmo. Neste caso não adianta reduzir o pedido quando o estoque for inferior a 10.

- 7. Uma empresa de consertos tem três funcionários para o atendimento aos clientes. Quando não é possível o atendimento através dos funcionários, a firma contrata serviços de terceiros a um custo maior. Faça 10 simulações para testar cada uma das hipóteses:
- a. A dispensa de um funcionário (o pior deles, com menor média), diminuirá os custos de operação.
 - b. A contratação de um funcionário (igual ao pior deles) diminuirá os custos de operação.

Dados:

Custo por atendimento: Funcionário: 10,00 e Terceiro: 15,00

Fixo do Funcionário por 10 dias: 50

Use os números aleatórios:

Funcionário 1: 00, 76, 07, 46, 85, 00, 06, 33, 37, 83

Funcionário 2: 96, 64, 02, 04, 89, 78, 89, 57, 63, 17

Funcionário 3: 83, 50, 68, 78, 44, 82, 23, 19, 47, 99

Número de chamadas: 53, 59, 43, 94, 10, 40, 37, 65, 20, 27.

Solução

Funcionário 01

Atendimentos	Frequência Relativa	Frequência Acumulada	Intervalo de nº aleatórios
10			
12			
14			

Funcionário 02

Atendimentos	Frequência	Frequência	Intervalo de
	Relativa	Acumulada	nº aleatórios
8			
9			
10			

Funcionário 03

Atendimentos	Frequência	Frequência	Intervalo de
	Relativa	Acumulada	nº aleatórios
7			
9			
10			

Chamadas por dia

Chamadas	Frequência Relativa	Frequência Acumulada	Intervalo de nº aleatórios
25			
30			
35			

Dia	Nº Aleatório		Nº Aleatório	Funcionár io 01	Nº Aleatório	Funcionár io 02	Nº Aleatório		Custo com Funcionários	Terceiros
1	53	30	0	10	92	10	83	9		1
2	59	30	76	14	64	9	50	9		0
3	43	30	7	10	2	8	68	9		3
4	94	35	46	12	4	8	78	9		6
5	10	25	85	14	89	10	44	9		0
6	40	30	0	10	78	10	82	9		1
7	37	30	6	10	89	10	23	7		3
8	65	30	33	12	57	9	19	7		2
9	20	25	37	12	63	9	47	9		0
10	27	25	83	14	17	8	99	10		0
Média		29		11,8		9,1		8,7		16

Na verdade, a necessidade do pior deles (aquele com menor média de atendimentos) é

Dia	Nº Aleatório	Nº de Chamadas	Nº Aleatório	Funcionár io 01	Nº Aleatório	Funcionár io 02	Nº Aleatório	Funcionár io 03
1	53	30	0	10	92	10	83	9
2	59	30	76	14	64	9	50	7
3	43	30	7	10	2	8	68	9
4	94	35	46	12	4	8	78	9
5	10	25	85	14	89	10	44	1
6	40	30	0	10	78	10	82	9
7	37	30	6	10	89	10	23	7
8	65	30	33	12	57	9	19	7
9	20	25	37	12	63	9	47	4
10	27	25	83	14	17	8	99	3

Para atender 65 clientes e o seu custo seria 650 + 50 (fixo) = 700,00

- a. Transferindo esses 65 atendimentos para os terceiros, o custo com terceiros aumentará em 975. Ficará, então, mais caro dispensar o pior deles e transferir o atendimento para terceiros. Logo, a afirmação "A dispensa de um funcionário (o pior deles, com menor média), diminuirá os custos da operação" é falsa.
- b. A afirmação "A contratação de um funcionário (igual ao pior deles) diminuirá os custos de operação" **é verdadeira**, pois este novo funcionário custará 50 (fixo) + 16 x 10,00 = 210,00, que é menor que R\$ 240,00 gastos com terceiros como mostra o quadro:

Dia	Nº Aleatório	Nº de Chamadas		Funcionár io 01	Nº Aleatório	Funcionár io 02	Nº Aleatório		Custo com Funcionários	Terceiros	Custo com Terceiros	Custo Total	
1	53	30	0	10	92	10	83	9	290,00	1	15,00	305,00	
2	59	30	76	14	64	9	50	7	300,00	0	0,00	300,00	
3	43	30	7	10	2	8	68	9	270,00	3	45,00	315,00	
4	94	35	46	12	4	8	78	9	290,00	6	90,00	380,00	
5	10	25	85	14	89	10	44	1	250,00	0	0,00	250,00	
6	40	30	0	10	78	10	82	9	290,00	1	15,00	305,00	
7	37	30	6	10	89	10	23	7	270,00	3	45,00	315,00	
8	65	30	33	12	57	9	19	7	280,00	2	30,00	310,00	
9	20	25	37	12	63	9	47	4	250,00	0	0,00	250,00	
10	27	25	83	14	17	8	99	3	250,00	0	0,00	250,00	
Média		29		11,8		9,1		6,5	2740,00	16	240,00	2980,00	Soma

EXRCÍCIOS EXTRAS

1. Um vendedor de latinhas de cerveja em rodeios fez o levantamento de quantas cervejas vendeu nos últimos 100 dias de eventos. Ele obteve a seguinte tabela:

Vendas	frequência
100	20
150	30
200	25
250	25

Esse vendedor consultou um aluno do 2º ano de Ciências Contábeis do IMES Catanduva que lhe sugeriu uma simulação de Monte Carlo para prever o lucro dele nos próximos 10 dias de eventos. De posse de uma tabela de números aleatórios, o aluno sorteou 10 números:

$$88 - 13 - 14 - 33 - 50 - 12 - 68 - 77 - 91 - 27$$

- a. Qual o lucro simulado do vendedor, sabendo-se que cada latinha proporciona-lhe um lucro de R\$ 1.25?
- b. Qual o lucro médio por dia?

Solução

Vendas	frequência	Frequência	Intervalo de
		Relativa	nº aleatórios
100	20		
150	30		
200	25		
250	25		

Números aleatórios	Quantidade Vendida	Lucro
88		
13		
14		
33		
50		
12		
68		
77		
91		
27		

Resp: O lucro total foi de R\$ 2.125,00 e o lucro médio por dia foi de R\$ 21,25.

